Effect of Thermal Cycling on Bond Strength of Pit and Fissures Sealants to Dental Enamel

Eni de Fátima Zanatta1, Anita Cruz Carvalho1, Janisse Martinelli1, Fernando Carlos Hueb de Menezes1, Thiago Assunção Valentino1, Cesar Penazzo Lepri1, Michele Gomide Dumont1, Regina Guenka Palma Dibb2 and Maria Angélica Hueb de Menezes Oliveira1*

1 Biomaterials Division, Universidade de Uberaba, Uberaba, MG, Brazil
2 Restorative Dentistry Department, Universidade de São Paulo, Ribeirão Preto, SP, Brazil

Abstract

The purpose of this study is to assess the influence of thermal cycling on the microshear bond strength of different sealants and resin modified glass ionomer to enamel. Sixty molar healthy human crowns were divided in six different groups (n=20) according the sealant type: G1 – Defense Chroma (resin sealant), G2–Fluroshield (resin sealant), and G3–Vitremer (resin modified glass ionomer). The sealants were applied on the flattened enamel surface (0.8 mm in diameter) according to the manufacturer instructions. Each group was subdivided (n=10) in A, without treatment, and B, submitted to 1,0000 thermal cycles of 30 seconds of bathes at 5°C and 55°C, repeated successively. The microshear bond strength was performed to all groups with a blade (0.5 mm in thickness) at a constant speed of 0.5 mm/min / 50 kgf. The bond strength values were subjected to 2-away ANOVA and Tukey Test (p<0.05). The results showed significant differences in bond strength values between the sealants (p>0.5). There was no interaction between factors (p=0.053). The failure mode showed predominance of adhesive failures in all groups, excepted at the G3B that had uniform failures distribution. At the groups submitted to thermal cycling, the adhesive failures tended to reduce, with mixed failures for G1 and G2, and mixed and cohesive for G3. The thermal cycles did not influence the bond strength of the sealants tested. The performance of resin materials was superior to the resin modified glass ionomer.

Keywords: Pit and fissure sealants, Thermal cycling, Microshear

Introduction

Dental caries is the most prevalent disease at the oral cavity associated to inadequate hygiene and diet [1]. Around 1970 the dental caries notable decreased in developed and emergent countries, particularly due the use of fluoride in dental pastes and at the public water supply of different cities [2,3]. The fluoride use is effective in to decrease the caries disease at smooth dental surfaces, however the oclusal dental morphology difficult its action due the plaque cumulus and self-hygiene difficulty [4], what implied to particularly additional preventives practical to avoid the caries developed, especially at the high risk patient [5,6]. The oclusal surfaces sealing method was introduced at the end of 1960 and consists in the application at fine layer of resin on the oclusal surface to avoid food debris and plaque accumulation to facility the dental cleaning. According previous studies, the sealants are recognized as an important method to prevent pit and fissure caries and/or prevent the development of incipient lesions with rapidly developing [7,8].

The sealing materials are classified in resinous (methacrylate monomers) or ionomeric (acid-base reaction) [9], and may contain fluor, present different opacity, inorganic charge and different forms of activation [10]. The resin sealants are suitable materials to prevent food retention on the occlusal surface, facilitating the self-cleaning and hygienization [5,6,11] and promote significant reduction at the Streptococcus mutans level on the occlusal surfaces of molars, remaining six months after application [12]. Nowadays, the majority of resin sealants are epoxy-acrylic resins, dimethacrylates result of the product from ether of bisphenol A and glycidyl methacrylate (Bis-GMA) reaction [11].

On the other hand, the use of glass ionomer cement as sealant was introduced in 1974 [13] and when compared with no sealed surfaces, promoted better fissures sealing and more resistance to demineralization, even after clinical visible material loss, with residual material at the bottom of the fissure [9]. Compared with the resin...
sealant, cement glass ionomer has disadvantages as lower bond strength and tenacity [14], high solubility and disintegration in the oral environment, what implies in very low retention rates. However, the resin-modified glass ionomer was introduced as a sealant to reduce the undesirable properties of conventional glass ionomers cement and approaching their properties inherent of the resin materials [15]. This material presents light activation, controlled work time, short setting time and enhanced mechanical strength. Nevertheless, when the conditioned enamel is infected with saliva and humidity, the mechanical properties of resin-modified glass ionomer are reduced [16-18].

A light-cured resin sealant containing thermochromic pigments that change its color to blue at temperatures below 31°C, facilitating the product visualization after application, was developed and has been used in the pediatric clinic, but they are required scientific studies that prove its effectiveness in different properties such as bond strength resistance and degradation.

According the explained above, the objective of this study was to evaluate the influence and the effect of thermal cycling on the bond strength of two resin sealants and one resin-modified glass ionomer sealant to enamel using microshear bond strength test.

Material and Methods

Sixty intact human third molars (n=60) were selected from Faculty of Dentistry stock teeth, University of Uberaba and approved by the Research Ethics UNIOUBE under protocol number CAAE 11432912.80000.5145. The teeth were stored in distilled water under refrigeration until use. The roots were cut from the crowns 2.0 mm below the cement-enamel junction using double sided diamond disc under refrigerated air and water in metallographic cutter (1000 Isomet, Buehler, Lake Bluff, Ill, USA). The crowns were cleaned and sectioned in the mesio-distal direction and divided in 6 groups (n=10). The materials used are shown in Table 1. Prior the inclusion and dental prepare, matrixes were obtained with the light body of addiction silicone (Express 3M/ESPE) with 0.5 mm in thickness and 0.8 mm in internal diameter, maintained in repose for 24 hours before use. The buccal dental surfaces were included at PVC (Tigre S.A. Joinville, SC, Brazil) with acrylic resin auto-activated. After the inclusion procedures, the buccal surfaces were polished with silicon carbetum sandpaper with granulation of 180, 400 and 600 under water cooling until to obtain flat enamel surface. Forward, the samples were washed with jets of air/water and divided into 6 groups (n=10) (Table 2).

The samples photoactivation was performed with a LED source (Radi-calSDI Ltd. Bayswater, Victoria, Australia) with irradiance of 645 mW/cm². After curing, the specimens were stored at 37°C for 24 hours at 100% relative humidity. After the storage period the groups were subdivided randomly into two subgroups, A - no thermal cycling, B - with 1,000 thermal cycles. The A subgroup specimens were stored at 37°C during the same taken time for the thermal cycles. After that all the groups were submitted to microshear bond-strength.

After 24 hours of the photopolymerization, 10 specimens of each group were subjected to 1,000 thermal cycles of alternatively 30s baths at temperatures of 55°C to 5°C. Samples that were not thermal-cycled remained in the oven for another 24 hours for the same time was consequent adhesion between the two groups for the test microshear.

The specimens were bonded to rectangular metallic device and placed in a universal testing machine (Emic 3000, São José dos Pinhais, Brazil) for microshear bond-test. A stainless steel blade with 0.5 mm in thickness was fixed at the top of the testing machine and the microshear bond test was applied on each cylinder separately with the speed of 0.5 mm/minute until the moment of rupture. The bond strength values (MPa) were subjected to 2-away ANOVA and Tukey Test (p<0.05).

After the microshear bond-strength test the specimens were stored in a dry environment for 24h and the failure mode was evaluated by stereomicroscopy (Nikon 88286, Honshu, Japan) with the increase of 40x. The failures were classified in adhesive (AD) when presented at least 75% of failure localized at the interface between the sealant and enamel, mixed (MIS) when both substrates were between 25 and 75% of the fracture area and cohesive (COE) when at least 75% of the bonding area was covered by the sealant.

Results

Statistical analysis revealed significant differences; Vitremer...
found significant difference between the materials, what can be explained by the use of phosphoric acid etching prior to the VM application, even without manufacturer instructions. Another study found similar results of shear bond strength to FS and VM, used according to the manufacturer’s recommendations [21]. The VM powder/liquid ratio recommended by the manufacturer (1:1) may have contributed to their improved performance to shear bond strength, as shown in a previous study [21] where the powder/liquid ratio altered the compressive strength of VM with statistical higher values to the ratio 1:1 compared to 1:2 and 1:3. However the use of this ratio in this study would not be possible due to high viscosity that the material presents when the proportioning is used and applied to the small diameter of the microsheet specimen (0.8 mm). It is important to note that the same difficulty to fill the matrix following the ratio recommended by the manufacturer can be found to filling fissures or occlusal grooves, which could result in bubbles or flaws in filling these fissures. However the manufacturer does not specifies the proportion to the use of this material as a sealant. This lack of standardization leaves possibility for controversial results as that found by Fracasso et al. (2005) [20] that changed the powered/liquid ratio of VM and obtained the statistical similarity data when the specimens were submitted to penetration test, contrasting with the results of Baseggio et al. (2010) [22] that found the higher retention values to FS comparing to VM, in accordance with the present study.

In this study, thermal cycling was performed in order to simulate temperature variations that occur daily in oral cavity [19]. The non-significant difference in bond strength values found in this study corroborates Titley et al. [23], which reported that the effect of thermal cycling did not alter the bond strength of the materials to enamel. The absence of water in the enamel can be a favorable factor for the durability of bond strength after thermal cycling since its presence in the substrate can conducted water absorption of the adhesive, allowing hydrolysis at adhesive interface after thermal cycles, damaging the bond strength [24]. Thus, other clinical and laboratory studies should be performed to confirm the results observed in this study. However the tendency to reduce the number of adhesive fractures after thermal cycling may suggest the deleterious effects of temperature variation inside the bodies of the materials, increasing intrinsic defects of the same. This may have occurred at the interface between the glass particles and the resin and ionomer matrix present at the VM leading to degradation of this interface and reducing the values for cohesive strength of the material.

Within the limitations of the study it is possible to conclude that the thermal cycling did not influence the bond strength values the tested sealants.

The performance of resin materials was higher when compared to glass ionomer sealant, which requires the determination of an adequate proportioning determination to its selection as an occlusal surfaces sealant.

References

